Второй способ. Используя неравенство при
. Можно получить, что
, но с другой стороны
. Тогда можно сразу сделать вывод о том, что единственный корень при
.
Принцип системности решения. Решая задачу, после того как решение нами осмыслено, мы своеобразно обращаемся к надсистеме (с точки зрения ТРИЗ) и ее базе данных, стараясь набросить на задачу некую информационную сеть. Затем мы приступаем к анализу составных частей и структуры задачи, привлекая для этого соответствующие подсистемы и информационное обеспечение (в ТРИЗ это называется переход в подсистему). Если эта деятельность не принесли результата, то опять обращаемся к надсистеме исходной задачи, пытаясь наиболее полно детерминировать поведение задачи, а затем снова возвращаемся к подсистеме. Этот системный подход может повторяться многократно, причем на разных уровнях. Отсюда однозначно вытекает заключение: необходимое условие решение задачи – это знание соответствующей теории, без которой информационная сеть будет с просветами.
Пример 27. Решите уравнение: .
Начнем с «экспериментальной стадии», пытаясь попросту угадать корень (переход в подсистему). Очевидно, один корень .
Если бы нам удалось показать, что других корней нет, то задача была бы решена. Перейдем в надсистему: есть две функции, причем строго возрастающие. Тогда накидываем информационную сеть (сумма двух строго возрастающих функций, функция, строго возрастающая на их общей области определения). Тем самым доказываем единственность корня.
В процесс решения задачи учащемуся приходиться преодолевать не только психологические барьеры, но вызванные ими отрицательные эмоции. Может быть, рассмотренные советы помогут преодолеть и то, и другое.
С необходимостью использования данных советов человек сталкивается во многих видах интеллектуальной деятельности, в частности, в процессе принятия решения. Поэтому навыки, приобретенные им при использовании данных задач на уроках математики, могут оказаться полезным и в очень отдаленных от нее областях, несмотря на имеющиеся различия принципиального характера.
Интеграция в общеобразовательные дисциплины методологии творчества, базирующейся на ТРИЗ и других методах поиска нестандартных решений, ставящих своей целью развитие творческого воображения и фантазии, формирование творческого системного мышления, выявление и развитие творческих способностей школьников, овладение способами, необходимыми для творческой деятельности, позволит повысить движущую силу развития творческого потенциала – интерес школьников к учебной работе, обеспечит самостоятельный поиск необходимой дополнительной учебной информации.
В этой главе мы адаптировали некоторые инструменты ТРИЗ для использования их на уроках математики. Приемы мышления, используемые в математике [38]: абстрагирование и конкретизация, обобщение и специализация, аналогии, можно сравнить с аналогичными принципами используемыми в ТРИЗ: принципом перехода в надсистему, принципом перехода в подсистему и принципом копирования.
Рассмотренные в этой главе способы по применению ТРИЗ-педагогики на уроках математики могут помочь решить проблему по формированию продуктивного мышления (креативность + системность) [83] у учащихся в школе на уроках математики.
Подробно о педагогике:
Педагогические условия реализации рейтингового контроля с целью повышения
эффективности учебного процесса в профессиональном училище
Второй этап эксперимента – формирующий. Цель: разработать методику рейтингового контроля реализовать рейтинговый контроль на уроках по дисциплине «Черчение», с целью повышения эффективности учебного процесса. Разработанную методику мы применили на уроках в экспериментальной группе 133. Планы – конс ...
Характеристика процессов памяти
Рассмотрим основные процессы памяти: запоминание, сохранение, воспроизведение, узнавание и забывание. По определению, данному в большом энциклопедическом словаре, "запоминание - главный процесс памяти, посредством которого осуществляется ввод информации". [8, c.334] В зависимости от спосо ...
Модель учебного предмета
Большую роль играет моделирование в предметной, графической или знаковой форме способа решения задачи. Учебной моделью можно назвать такое изображение, которое фиксирует всеобщее отношение некоторого целостного объекта и обеспечивает его дальнейший анализ. Поскольку в учебной модели изображается ...