Пример 11. Отрицательные числа получаются из положительных применением принципа инверсии.
Пример 12. Иррациональные числа получаются из рациональных применением принципа непрерывности полезного действия: числа занимают непрерывно всю числовую ось.
Пример 13. Комплексные числа получаются из вещественных применением принципа перехода в другое измерение: от числовой прямой к числовой комплексной плоскости.
Пример 14. Переменные получаются из постоянных применением принципа динамичности.
Пример 15. Функции одной переменной получаются из одиночных переменных по закону перехода в бисистему.
Пример 16. Функции нескольких переменных получаются из одиночных переменных по закону перехода в полисистему.
Пример 17. Создание Ньютоном и Лейбницем интегрального исчисления – классический пример перехода на микроуровень.
Таким образом, можно аналогично рассуждать в отношении других математических объектов, используя метод переизобретения знаний. Использовать данный метод можно на факультативных занятиях. Учащаемся наглядно показывается, как их уровень знакомства с математикой соответствует общим законам развития систем.
В конце первой главы в инструменты ТРИЗ-педагогики мы включили методы мышления, не относящиеся собственно к ТРИЗ. По сравнению классическими инструментами ТРИЗ методы технического творчества лучше отработаны при использовании их в учебном процессе [22, 42, 67, 68, 70] начиная с начальной школы [20, 28, 29, 87], но об использовании данных методов при обучении школьников математике литературы не встречается, хотя они являются ценным дидактическим материалом.
К основным методам научного творчества можно отнести: метод проб и ошибок; метод морфологического анализа; мозговой штурм; синергетику.
Данные методы достаточно легко можно применять при решении учебных математических задач.
Пример 18. В каком случае произведение двух натуральных чисел дает четное число?
Используем метод проб и ошибок, переберем все возможные варианты четности двух чисел. И сделаем соответствующий вывод. В альтернативу можно показать применение идеального конечно результата ТРИЗ, сформулировав, что произведение данных чисел дало четной число , тогда вывод о необходимости четности хотя бы одного из них достаточно логичен.
При решении многих математических задач при использовании метода проб и ошибок другого математического аппарата рассуждений, учащиеся осознанно усваивают ценность математики.
Пример 19. Укажите способы определения высоты здания без сложных приборов.
Коллективное (групповое) решение этой задачи методом мозгового штурма приводит к разнообразным выводам. Наиболее оптимальное и эффективное из них, как правило, попутно подводит к изучению темы «Подобные треугольники» [76].
Рассмотрим два из возможных вариантов решения. Первый вариант предполагает, что человек AB стоит и смотрит на здание ED (рис. 16). Измерив расстояния AD и AO, зная свою высоту AB, можно рассмотреть подобные треугольники BEC и ОВА, из соотношения сторон которых можно
узнать искомое.
Второй вариант решения предполагает, что человек смотрит из точки О на некоторый предмет AB, высоту которого мы можем измерить, например, палку (рис. 17). Тогда из подобия тех же треугольников, что и в первом варианте с легкостью находится искомое.
Другие контрольные ответы заключается с применением тени, зеркала и построение высотомеров [59].
Подробно о педагогике:
Изучение темы «Железо и его соединения» на уроке по
химии в средней школе
Железо: его строение и свойства “Век девятнадцатый, железный, Воистину жестокий век! Тобою в мрак ночной, беззвездный Беспечный брошен человек!” Цели урока: сформировать представление о физических и химических свойствах железа в зависимости от проявляемой им степени окисления и природы окислителя; ...
Краткая биография Корнея Чуковского
Корней Иванович Чуковский (Николай Иванович Корнейчуков) родился в Петербурге в 1882 году в бедной семье. Свое детство он провел в Одессе и Николаеве. В одесской гимназии он познакомился и подружился с Борисом Житковым, в будущем также знаменитым детским писателем. Чуковский часто ходил в дом к Жит ...
Эмоционально-волевая готовность
Развитие эмоционально-волевой сферы связано со становлением регулятивной функции психики. В рассматриваемый возрастной период дети склонны к сильным переживаниям, из-за пластичности нервных процессов происходит быстрая смена чувств. У детей особое значение начинает приобретать интеллектуальные чувс ...