В-третьих, указанная форма связи числа и счета (полноценных представлений — арифметических операций) с возникшими до них категориями количества и порядка (неразвитых представлений — доарифметических образований) позволяет положить арифметику (число) в основу овладения всей математикой.
Эти допущения упускают, на наш взгляд, некоторые важные обстоятельства как собственно математического, так и логико-психологического характера.
Прежде всего, как было показано выше, многие общематематические понятия, и в частности понятия соотношения эквивалентности и порядка, систематически рассматриваются в математике независимо от числовой формы. Эти понятия не теряют своего независимого характера: на их основе можно описывать и изучать частный предмет — разные числовые системы, понятия о которых сами по себе не покрывают смысла и значения исходных определений. Причем в истории математической науки общие понятия развивались именно в той мере, в какой «алгебраические операции», известный пример которых доставляют четыре действия арифметики, стали применяться к элементам совершенно не «числового» характера.
В последнее время делаются попытки развернуть в преподавании этап введения ребенка в математику. Эта тенденция находит свое выражение в методических руководствах, а также в некоторых экспериментальных учебниках. Так, в одном американском учебнике, предназначенном для обучения детей 6—7 лет, на первых страницах вводятся задания и упражнения, специально тренирующие детей в установлении тождественности предметных групп. Детям показывается прием соединения множеств, — при этом вводится соответствующая математическая символика (знаки U и +). Работа с числами опирается на элементарные сведения о множествах.
Можно по-разному оценивать содержание конкретных попыток реализации этой тенденции, но сама она, на наш взгляд, вполне правомерна и перспективна.
При выборе исходных пунктов школьного курса математики существенное значение имеет еще одно обстоятельство, касающееся природы математической абстракции и специфики ее предмета. Высоко оценивая стремление А. Лебега к выяснению материального содержания математических понятий, А.Н. Колмогоров вместе с тем упрекает его в недооценке самостоятельности математики. Следуя высказываниям Ф. Энгельса, А.Н. Колмогоров подчеркивает тот момент, что математика «изучает материальный мир с особой точки зрения, что ее непосредственным объектом являются пространственные формы и количественные отношения действительного мира. Сами эти формы и отношения в их чистом виде, а не конкретные материальные тела являются той реальностью, которая изучается математикой».
Конечно, здесь речь идет о математике как науке, однако с этим нельзя не считаться и при построении учебного предмета. Программа этого предмета должна предусматривать такую работу ребенка, благодаря которой он сможет правильно и в должный момент «отойти» от конкретных тел, выделив в них пространственные формы и количественные отношения, придав им «чистый вид». Только на этой основе у него может сформироваться правильное понимание предмета математического знания. Но формировать этот «вид» необходимо при постоянной связи с конкретными телами, действия с которыми придают понятиям их подлинный материальный смысл. В этом своеобразное противоречие начальных этапов преподавания математики (видимо, не только начальных). То, что математик-ученый уже имеет перед собой в «чистом виде», то в голове ребенка предстоит лишь только построить. Этот «вид» не дан ему с самого начала — его надо вывести, получить в процессе определенной работы.
Вместе с тем ясно, что учебный материал, с которым ребенок начинает работать, до поры до времени не может рассматриваться им с точки зрения «чистых» форм и отношений, ибо этой точки зрения у ребенка еще нет. И наоборот, уже при выделенности «чистого вида» сами материальные тела будут выглядеть для человека иначе, нежели до этого.
Как разрешать это противоречие при обучении математике? Какое построение курса и способ введения понятий наиболее соответствуют решению этой задачи? Без ответов на эти вопросы нельзя обоснованно строить и начальные разделы курса. Именно в решении этих вопросов традиционная методика страдает наибольшими дефектами. Она не раскрывает в должной мере те характеристики количественных отношений, выделение которых необходимо для построения в голове ребенка исходных математических абстракций и для дальнейшей работы в плане этих абстракций.
Вопрос о том, с чего начинать курс математики и целесообразно ли его начинать непосредственно с числа, имеет не узко методический и частный смысл, а принципиальное значение с точки зрения формирования у ребенка общих представлений о предмете математики. Можно предполагать, что подлинное значение начальных этапов преподавания как раз и состоит в том, чтобы раскрыть детям общие особенности абстракций, конституирующих предмет дальнейшего изучения, создающих его «чистый вид». Форма и степень этой «чистоты», конечно, не будут непосредственно совпадать с теорией предмета, но нечто сходное по содержанию здесь должно быть, — определение того, в чем именно заключается здесь расхождение и частичное сходство, является объектом логико-психологических и педагогических исследований.
Подробно о педагогике:
Виды нарушений развития и их причины
Содержание учебного материала Понятие «норма» и «отклонения» в психическом и личностном развитии. Классификация и виды отклонений в развитии и поведении детей. Нарушения в соматическом, психическом, психическом, интеллектуальном, речевом, сенсорном развитии человека (ребенка). Этиология нарушений н ...
Психолого-педагогическая сущность и структура умения решать проблемы во
взаимоотношениях людей
Общение имеет огромное значение в формировании человеческой психики, её развитии и становлении разумного, культурного поведения. Через общение с психологически развитыми людьми, благодаря широким возможностям к научению, человек приобретает все свои высшие производительные способности и качества. Ч ...
Принципы демократизма, гуманизма и народности
Демократизм Ломоносова выразился, прежде всего, в стремлении распространить образование во всех слоях русского общества. Он отстаивал мысль о расширении сети школ, числа обучающихся детей в них, а также выступил за единую бессословную систему образования, доступную всем. Он предусмотрел привлечени ...